Extracellular Matrix Defects in Aneurysmal Fibulin-4 Mice Predispose to Lung Emphysema
نویسندگان
چکیده
BACKGROUND In this study we set out to investigate the clinically observed relationship between chronic obstructive pulmonary disease (COPD) and aortic aneurysms. We tested the hypothesis that an inherited deficiency of connective tissue might play a role in the combined development of pulmonary emphysema and vascular disease. METHODS We first determined the prevalence of chronic obstructive pulmonary disease in a clinical cohort of aortic aneurysms patients and arterial occlusive disease patients. Subsequently, we used a combined approach comprising pathological, functional, molecular imaging, immunological and gene expression analysis to reveal the sequence of events that culminates in pulmonary emphysema in aneurysmal Fibulin-4 deficient (Fibulin-4(R)) mice. RESULTS Here we show that COPD is significantly more prevalent in aneurysm patients compared to arterial occlusive disease patients, independent of smoking, other clinical risk factors and inflammation. In addition, we demonstrate that aneurysmal Fibulin-4(R/R) mice display severe developmental lung emphysema, whereas Fibulin-4(+/R) mice acquire alveolar breakdown with age and upon infectious stress. This vicious circle is further exacerbated by the diminished antiprotease capacity of the lungs and ultimately results in the development of pulmonary emphysema. CONCLUSIONS Our experimental data identify genetic susceptibility to extracellular matrix degradation and secondary inflammation as the common mechanisms in both COPD and aneurysm formation.
منابع مشابه
Targeted disruption of fibulin-4 abolishes elastogenesis and causes perinatal lethality in mice.
Elastic fibers provide tissues with elasticity which is critical to the function of arteries, lungs, skin, and other dynamic organs. Loss of elasticity is a major contributing factor in aging and diseases. However, the mechanism of elastic fiber development and assembly is poorly understood. Here, we show that lack of fibulin-4, an extracellular matrix molecule, abolishes elastogenesis. fibulin...
متن کاملCoordinate expression of fibulin-5/DANCE and elastin during lung injury repair.
Fibulin-5, previously known as DANCE and EVEC, is a secreted extracellular matrix protein that functions as a scaffold for elastin fiber assembly and as a ligand for integrins alphavbeta3, alphavbeta5, and alpha9beta1. Fibulin-5 is developmentally regulated in the lung, and lung air space enlargement develops in mice deficient in fibulin-5. Fibulin-5 is also induced in adult lung following lung...
متن کاملFunction of Ltbp-4L and fibulin-4 in survival and elastogenesis in mice
LTBP-4L and LTBP-4S are two isoforms of the extracellular matrix protein latent-transforming growth factor beta-binding protein 4 (LTBP-4). The mutational inactivation of both isoforms causes autosomal recessive cutis laxa type 1C (ARCL1C) in humans and an ARCL1C-like phenotype in Ltbp4-/- mice, both characterized by high postnatal mortality and severely affected elastogenesis. However, genetic...
متن کاملFibulin-3 suppresses Wnt/β-catenin signaling and lung cancer invasion.
The 5 year survival rate of lung cancer is <20%, with most patients dying from distant metastasis. However, the molecular mechanisms underlying lung cancer invasion and metastasis have not been fully characterized. In this study, we found that fibulin-3, a fibulin family extracellular matrix protein, functions as a suppressor of lung cancer invasion and metastasis. Fibulin-3 was downregulated i...
متن کاملFibulin-2 Is a Driver of Malignant Progression in Lung Adenocarcinoma
The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp an...
متن کامل